Большинство патогенных микроорганизмов выращивают

Большинство патогенных микроорганизмов выращивают

Жизнь организмов определяется температурой больше, чем каким-либо фактором внешней среды, в связи с тем, что все организмы построены из химических компонентов и все процессы жизни происходят на основе химических реакций, подчиненных законам термодинамики. Температура действует не только на скорость химических реакций, но также является причиной структурной перестройки протеинов, фазовых перемещений жиров, изменения структуры воды. Температурная амплитуда биохимической активности относительно мала в связи со специфическими свойствами биомолекул.
Витальная температурная зона, в пределах которой осуществляется активная жизнедеятельность микроорганизмов, за некоторым исключением, укладывается в рамки от 0 o до 50-60 o С. Нижняя граница активной жизнедеятельности микроорганизмов лимитируется, прежде всего, капельно-жидкой водой, постоянным потоком которой в клетке поддерживается трехмерность белковых молекул и других структурных носителей жизни и протекающие процессы ассимиляции и диссимиляции. Поэтому кристаллизация воды в омывающих жидкостях и клетках служит критическим порогом их жизни. Однако, если верхний порог витальной зоны, который определяется тепловой коагуляцией белков, довольно узок, то нижняя граница зоны жизнедеятельности более широка и «размыта», вследствие многих прямых и косвенных адаптаций к сохранению части воды в жидком состоянии, выработавшихся у организмов в процессе эволюции. Судя по многочисленным фактам выживания микроорганизмов после глубокого охлаждения, холод не нарушает органических соединений, и при нагревании микробные тела возвращаются к жизни.
По отношению к температурным условиям микроорганизмы разделяют на мезофильные, психрофильные и термофильные (см.рис1). Деление бактерий на указанные группы довольно условно, так как температурные диапазоны их роста значительно перекрываются.

Большинство известных видов относится к мезофилам, у которых оптимальные температуры роста лежат между 3 o и 40 o , а температурный диапазон, в котором возможен рост находится между 10 и 45-50 o . типичным мезофилом является E. сoli: нижняя граница роста +10 o , верхняя +49 o , оптимальная температура +37 o при росте на богатой среде.
Психрофилы и факторы, определяющие возможнсоть роста при низких температурах. Область температур роста психрофилов лежит в пределах от –10 до +20 o и выше. В свою очередь психрофилы делятся на облигатных и факультативных.
Основное различие между подгруппами заключается в том, что облигатные психрофилы не способны к росту при температуре выше 20 o 0 а верхняя температурная граница роста факультативных форм намного выше. Различаются они также и оптимальными температурными зонами роста, находящимися у облигатных психрофилов значительно ниже, чем у факультативных. Принципиальное же сходство между ними – способность к росту при 0 o и минусовых температурах.

Термофилы и механизм термофилии.

Группу термофилов делят на 4 подгруппы:

  1. Термотолерантные виды растут в пределах от 10 до 55 – 60 o , оптимальная область лежит при 35 — 40 o .
  2. Факультативные термофилы имеют максимальную температуру роста между 50 и 65 o , но способны также к размножению при комнатной температуре (20 o ). К облигатным термофилам относят виды, обнаруживающие способность расти при температурах около 70 o и не растущие ниже 40 o .
  3. Наконец, недавно обнаружены прокариоты, выделенные в подгруппу экстремальных термофилов. Для них характерны следующие температурные параметры: оптимум в области 80 –105 o , минимальная граница роста 60 o и выше, максимальная – до 110 o . К экстримальным термофилам относятся организмы из группы архебактерий, не имеющие аналогов среди мезофилов, например представители родов Thermoproteus, Pyrococcus, Pyrodictium и др.

Появились публикации об обнаружении бактерий, способных расти при температуре воды 250 – 300 o С и давлении 265 атм (при этом давлении вода в жидком состоянии может находиться до 460 o С). Эти бактерии выделены из проб воды поднятых с глубины 2560 м над поверхностью Тихого океана, где предположительно они существуют в горячих струях, выбрасываемых на дне океана так называемыми «черными гейзерами». Давление в районе обнаружения бактерий около 250 атм, а температура воды может быть выше 350 o С. В связи с этим исследователи начинают переоценивать границы условий, при которых способны развиваться прокариоты. Высказывается предположение, что прокариоты могут существовать везде, где есть вода в жидком состоянии и достаточное количество питательных веществ.
Высокая температура вызывает коагуляцию структурных белков и ферментов микроорганизмов. Большинство вегетативных форм гибнет при 60 o С в течение 30 мин, а при 80-100 o С – через 1мин. Для сохранения жизнеспособности относительно благоприятны низкие температуры (например, ниже 0 o С), безвредные для большинства микробов. Бактерии выживают при температуре ниже -100 o С; споры бактерий и вирусы годами сохраняются в жидком азоте. Простейшие и некоторые бактерии (спирохеты, риккетсии и хламидии) менее устойчивы к температурным воздействиям.
Воздействие высоких температур широко используется в лабораторной микробиологической практике. Стерилизация (sterilis –бесплодный) объектов проводится методами автоклавирования, кипячения, тиндализации, пастеризации, фламбирования, стерилизацией сухим жаром, паром без давления.
В хирургической практике стерилизуют инструменты, растворы, перевязочный материал.

Холодоустойчивость микроорганизмов

nsau.edu.ru

Изучение микромира под микроскопом/§4

Содержание

Питательные среды — вещества, обеспечивающие необходимые условия для культивирования (выращивания) микроорганизмов или накопления продуктов их жизнедеятельности.

Различают жидкие, плотные и полужидкие среды. Плотные и полужидкие готовят из жидких прибавляя к ним агар или (реже) желатин. Агар-агар — это полисахарид, получаемый из определенных сортов морских водорослей. Агар обычно вносят в питательную среду в концентрации 1—2% (или при изготовлении полужидких сред — 0,2—0,4%), желатин — 10—15%. При t° 25—30° желатиновые среды плавятся, поэтому микроорганизмы на них выращивают преимущественно при комнатной температуре.

Читать еще:  Какие сорта винограда лучше выращивать в белоруссии?

Простые питательные среды обеспечивают питательные потребности большинства патогенных микроорганизмов. Сложные питательные среды — это среды для микробов, которые не растут на простых питательных средах. Также сложными являются дифференциально-диагностические среды, которые используют для целенаправленного выделения одного или нескольких видов микроорганизмов путем создания оптимальных условий их выращивания и угнетения роста сопутствующей микрофлоры.

ru.m.wikiversity.org

ОСНОВНЫЕ ПРИНЦИПЫ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ

Читайте также:

  1. Cостав микрофлоры основных заквасок, применяемых в молочной промышленности. Принципы подбора культур в состав заквасок.
  2. D.2 Идентификация затрат на основные действия
  3. I. Основные задачи обеспечения безопасности и информации в информационных системах
  4. I. ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ЗАЩИТЫ ИНФОРМАЦИИ В КОМПЬЮТЕРНЫХ СИСТЕМАХ
  5. I. Основные теории происхождения государства и права.
  6. I. Понятие, признаки, принципы, цели юридической ответственности.
  7. II. Принципы, требования и гарантии законности.
  8. II.Принципы принятия инвестиционных решений
  9. А. Колониальная система: основные этапы.
  10. Актуальность и основные понятия функции контроля
  11. Арбитражные суды, их роль и основные задачи
  12. Арматура. Её основные физико-механические свойства. Арматурные изделия

Для выделения чистой культуры микроорганизмов, изучения их биологических свойств с целью идентификации, а также для получения биомассы необходимо размножить микроорганизмы в условиях лаборатории. Культивирование, или выращивание, микробов возможно лишь при создании определенных условий для их жизнедеятельности. Большинство бактерий, дрожжей, плесеней культивируют на искусственных питательных средах. Вирусы и риккетсии размножаются только в живых клетках, культуре тканей, курином эмбрионе или в организме животного.

Искусственные среды, применяемые для культивирования микроорганизмов, должны соответствовать определенным требованиям: быть легкоусвояемыми, с необходимым составом’азотистых и углеводных веществ, витаминов, необходимой концентрацией солей, с определенным водородным показателем (рН среды); обладать буферными свойствами; иметь оптимальный окислительно-восстановительный потенциал.

Питательные среды должны также содержать достаточное количество воды и обязательно быть стерильными, т. е. до посева не содержать микроорганизмов. Источником азота в средах могут быть различные органические, редко — неорганические соединения. Часто к безбелковым средам добавляют пептон, представляющий собой продукт неполного гидролиза белка. Протеолитические микроорганизмы в качестве азотистого вещества могут использовать желатин («животный студень»). Источником углерода в питательных средах чаще служат углеводы, спирты, некоторые органические кислоты.

Для приготовления искусственных питательных сред можно использовать различные естественные продукты: молоко, кровь, сыворотку, мясо, желток куриного яйца, картофель и другие органические вещества и минеральные соли.

Искусственные питательные среды по назначению подразделяют на четыре основные группы: универсальные, специальные, избирательные (элективные) и дифференциально-диагностические.

К универсальным средам относят мясо-пептонный бульон и мясо-пептонный агар, на которых растут многие виды патогенных и непатогенных бактерий.

Специальные среды применяют для выращивания бактерий, не множающихся на универсальных средах. К специальным относят еды с молоком, сывороткой крови, с добавлением крови животных,т-чюкозы и др. На них выращивают молочнокислые бактерии, паТогенные и другие микроорганизмы.

В избирательных (элективных) средах хорошо развиваются только бактерии определенных видов. К таким средам относятся среды обогащения, в которых интересующий исследователя вид растет быстрее сопутствующих бактерий. Например, среда Кесслер, содержащая в своем составе генцианвиолет и желчь крупного рогатого скота, элективна для устойчивых к этим веществам грамотрицательных кишечных палочек и вместе с тем селективна для чувствительных грамположительных

Дифференциально-диагностические среды используют для дифференциации определенных видов бактерий по их культуральным и биохимическим свойствам. К ним относятся:

среды для определения протеолитической активности (мясопептонный желатин — МПЖ, молочный агар и др.);

среды для определения ферментации углеводов (среды Гисса, Эидо, Плоскирева и др.);

среды для определения гемолитической способности (кровяной агар и другие среды с добавлением крови животных);

среды для определения восстановительной (редуцирующей) способности микроорганизмов (среда Вильсон-Блера);

селективные среды, применяемые для дифференциации прототрофных и ауксотрофных бактерий.

По консистенции питательные среды могут быть плотными, полужидкими и жидкими. Для получения сред плотной консистенции к жидким средам добавляют 2-2,5 % агара или 10-20 % желатина. Полужидкие среды получают при добавлении 0,5- 1,0 % агара. Агар (по-малайски «желе») — плотное волокнистое вещество, получаемое из красных водорослей и образующее в водных растворах плотный гель (студень). Он состоит в основном из полисахаридов (70-75 %). Основными компонентами агара являются высокомолекулярные вещества агароза и агаропептин, которые не расщепляются и не усваиваются микроорганизмами. В связи с этим агар не является питательным субстратом, его добавляют в среды исключительно для получения плотной консистенции. Агар расплавляется в воде при 100 °С, а застывает при 40-43 °С. Его выпускают в виде желтоватых пластинок или серовато-белого порошка.

Осмотические условия, необходимые для жизнедеятельности микробов, создают в питательной среде добавлением хлорида натрия или определенным сочетанием солей фосфата натрия и фосфата калия Для жизнедеятельности микроорганизмов большое значение имеет реакция среды — водородный показатель (рН), который определяется соотношением водородных (Н + ) и гидроксильных (ОН) ионов. Он представляет собой логарифм числа абсолютной концентрации водородных ионов.

Водородный показатель нейтральной реакции соответствует 7,0. В этом случае число водородных ионов равно числу гидроксильных. Показатель ниже 7,0 указывает на кислую реакцию, а выше 7,0 — на щелочную. Микроорганизмы приспособились развиваться в условиях с чрезвычайно широким диапазоном рН — от 2,0 до 8,5. Большинство сапрофитных и патогенных микроорганизмов культивируют при слабощелочной реакции среды с рН 7,2-7,4. Для культивирования молочнокислых бактерий, дрожжей и плесеней необходима кислая реакция среды, рН 5,0-6,5.

Читать еще:  Халапеньо как выращивать в домашних условиях

В настоящее время многие питательные среды выпускают в виде готовых сухих сред-полуфабрикатов, содержащих все необходимые для жизнедеятельности микроорганизмов ингредиенты. Для приготовления питательной среды порошок разводят водой, полученную смесь кипятят, устанавливают необходимое значение рН и стерилизуют.

Большое значение для роста и размножения микроорганизмов на искусственных питательных средах имеют температурные условия. По отношению к температурному режиму все микроорганизмы делят на три группы: психрофильные (холодолюбивые), мезофильные (средние), термофильные (теплолюбивые). Температурные границы размножения у психрофилов составляют от 0 до 20 °С, у мезофилов — от 20 до 45 °С, у термофилов — от 45 до 70 °С.

При выращивании аэробов посевы культивируют в термостатах при доступе кислорода воздуха, т. е. в обычных условиях. Для культивирования анаэробов создают бескислородные условия, которые можно достичь физическими, химическими и биологическими методами. Используют также анаэробные термостаты.

Физические методы основаны на создании вакуума в специальных аппаратах анаэростатах или в вакуум-эксикаторах, в которые сначала помещают посевы, а затем в аппаратах создают разрежение.

Иногда воздух в анаэростатах заменяют углекислым газом, азотом или другим инертным газом. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробов в глубине столбика питательного агара или внутри запаянных стеклянных трубок. Анаэробные условия можно создать и более простыми способами: с помощью слоя агара, залитого поверх посевов на плотной питательной среде, или с помощью вазелинового масла, которым покрывают жидкую питательную среду (среда Китта-Тароцци). Химические методы заключаются в том, что в эксикатор с посевами помещают химические вещества, например пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном культивировании аэробов и анаэробов на плотных питательных средах в герметически закупоренных чашках Петри. При этом кислород поглощается растущими аэробами, посеянными на одной половине среды, после чего начинается рост анаэробов, посев которых сделан на другой половине.

Дата добавления: 2014-01-05 ; Просмотров: 5068 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

studopedia.su

Влияние факторов внешней среды на микроорганизмы

По отношению к температуре большинство патогенных микроорганизмов являются:

Оптимальной температурой роста для термофилов является:

Большинство патогенных микробов выращивают при температуре:

К низким температурам особенно чувствительны:

-возбудители сибирской язвы

Устойчивые к действию высоких и низких температур:

+споры сибирской язвы

Химическое вещество используемое для дезинфекции:

К поверхностно-активным веществам относятся:

+жирные кислоты, мыла

Вещества обладающие олигодинамическим действием:

+растворы серебра, ртути

Химические вещества — окислители, нарушающие деятельность ферментов, вызывающие денатурацию белков:

-соли тяжелых металлов

Химические вещества, используемые для обеззараживания ран, кожи:

Перевязочный материал стерилизуют в:

Наиболее надежный, эффективный способ стерилизации:

Стерилизацию воздуха в операционных, больницах, боксах проводят:-

Для приготовления 1 л. 1% раствора хлорамина необходимо взять вещества:

+химические вещества, используемые для лечения человека обеззараживания ран

-вещества, применяемые для стерилизации

-вещества, содержащие детергенты

+полное освобождение объекта от микроорганизмов

-система мероприятий, препятствующих микробному загрязнению объекта

-полное освобождение объекта от болезнетворных микроорганизмов

-комплекс мероприятий, направленных на уничтожение патогенныз и условно-патогенных микроорганизмов

В автоклаве стерилизуют:

-жидкости, содержащие белок

-одноразовые медицинские инструменты

Красители оказывают на микроорганизмы действие:

-снижают поверхностное натяжение

-вызывают повышение давления внутри клетки

+задерживают рост и размножение микроорганизмов

На жизнедеятельность бактерий не оказывает действия:

Действие альдегидов на бактериальную клетку:

-задерживают рост и размножение микроорганизмов

+приводят к денатурации белка

-вызывают окисление белка

-снижают поверхностное натяжение

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

studopedia.org

Большинство патогенных микроорганизмов выращивают

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг .

Смотреть что такое «Питательные среды» в других словарях:

ПИТАТЕЛЬНЫЕ СРЕДЫ — ПИТАТЕЛЬНЫЕ СРЕДЫ, искусственные среды того или иного состава, предназначенные для культивирования микробов и простейших в лабораторных условиях. Впервые были введены для изолирования отдельных видов бактерий Р. Кохом в 1881 году, что создало… … Большая медицинская энциклопедия

ПИТАТЕЛЬНЫЕ СРЕДЫ — жидкие или твердые смеси веществ, на которых выращивают микроорганизмы в лабораторных или промышленных условиях. Содержат соединения, служащие источниками углерода, азота, фосфора, витаминов и других компонентов, необходимых для жизнедеятельности … Большой Энциклопедический словарь

питательные среды — жидкие или твёрдые смеси веществ, на которых выращивают микроорганизмы в лабораторных или промышленных условиях. Содержат соединения, служащие источниками углерода, азота, фосфора, витаминов и других компонентов, необходимых для жизнедеятельности … Энциклопедический словарь

ПИТАТЕЛЬНЫЕ СРЕДЫ — среды, на которых выращивают живые организмы (напр., для водных культур высших растений). П. с. бывают: естественные, для бактерий и грибов (картофель, молоко и др.); искусственные для культур бактерий и грибов (мясопептонный бульон, желатин и др … Словарь ботанических терминов

Питательные среды — жидкие или плотные среды, применяемые для выращивания в лабораторных или промышленных условиях бактерий, дрожжей, микроскопических грибов, водорослей, простейших, вирусов и культур растительных или животных клеток. Синтетические П. с.… … Большая советская энциклопедия

Читать еще:  Клубника балконный поток ампельная как выращивать

ПИТАТЕЛЬНЫЕ СРЕДЫ — жидкие или твёрдые смеси в в, на к рых выращивают микроорганизмы в лаб. или пром. условиях. Содержат соед., служащие источниками углерода, азота, фосфора, витаминов и др. компонентов, необходимых для жизнедеятельности микробов … Естествознание. Энциклопедический словарь

Питательные среды бактериологические — жидкие, полужидкие или плотные субстраты, используемые для выращивания микроорганизмов в лабораторных или производственных условиях. Используют для выделения чистых к р бактерий, грибов и простейших из биогенных или абиогенных объектов, для… … Словарь микробиологии

Питательные среды для бактерий — Под этим именем подразумевают различного рода субстраты, приготовляемые для изучения жизнедеятельности микроорганизмов при определенных условиях, изменяемых по воле экспериментатора. Микрохимические анализы и опыты искусственной культуры выяснили … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

питательные среды Гисса — см. Гисса среды … Большой медицинский словарь

питательные среды Дифко — см. Среды Дифко … Большой медицинский словарь

питательные среды Лифсона — см. Лифсона среды … Большой медицинский словарь

dic.academic.ru

Космические белки: зачем на МКС выращивают идеальные биокристаллы

На утро 25 июня намечено возвращение с МКС контейнера с выращенными в космосе биокристаллами. Их исследование поможет ученым Курчатовского института в создании более эффективных лекарств, воздействующих на вирусы и бактерии на молекулярном уровне. На Земле кристаллы изучат с помощью метода рентгеноструктурного анализа.

Стремление к идеалу

Лекарства, воздействующие на структуру патогенных бактерий и вирусов, считаются на данный момент одними из самых эффективных. Чтобы создать такие препараты, необходимо детально исследовать структуры биомолекул, отвечающих за жизнедеятельность бактерий и вирусов.

— Молекулы белков представляют собой мишени для лекарственных средств, — рассказала главный научный сотрудник отдела структурной биологии Курчатовского комплекса НБИКС-природоподобных технологий Инна Куранова. — Терапевтическое действие большинства препаратов основано на том, что, взаимодействуя с определенными биомолекулами, они прекращают или усиливают реакцию, которую белок катализирует в бактерии или вирусе. Если белок, необходимый для жизнедеятельности бактерии или вируса, перестает работать, болезнетворный организм погибает. Чтобы создать лекарственный препарат, избирательно действующий на такой белок, нужно детально изучить его строение.

Самый распространенный на сегодняшний день метод изучения структур биомолекул (белков) — рентгеноструктурный анализ. Объект просвечивают рентгеновскими лучами под разными углами, чтобы получить так называемую картину дифракции –– рассеяния рентгеновских лучей. Затем с помощью компьютерно-математических методов ученые обрабатывают картину дифракции и восстанавливают расположение конкретных атомов в молекуле. Но для применения рентгеноструктурного анализа необходим белок в кристаллической форме, в которой биомолекулы «упакованы» в упорядоченную трехмерную структуру с фиксированным положением атомов.

Чтобы получить совершенные кристаллы, ученые из Курчатовского института выращивают их в космосе. Кристаллы растут в специально подобранных растворах, действующих на белок таким образом, что его макромолекулы, объединяясь, образуют строго упорядоченную кристаллическую структуру. Подбор состава раствора, обеспечивающего необходимые физико-химические условия такой «реакции», осуществляет специальная автоматическая установка.

Космический рейс

— Чтобы получить идеальный кристалл, необходимо обеспечить к нему равномерный доступ вещества, — пояснила начальник отдела структурной биологии Курчатовского комплекса НБИКС-природоподобных технологий Валерия Самыгина. — На Земле этому препятствует гравитация. Поэтому мы отправляем белки в космос, где в условиях невесомости имеются почти идеальные условия для роста их кристаллов. Там молекулы могут встраиваться в кристалл равномерно со всех сторон. А чем совершеннее кристалл, тем выше точность, с которой мы определим структуру макромолекулы.

Перед отправкой на МКС ученые помещают белок и раствор в узкий контейнер длиной в детскую ладонь. Эти контейнеры размещают в термостате, который поддерживает постоянную температуру 20 ºС. Чтобы рост кристаллов не начался раньше времени, компоненты отделены друг от друга особым пористым гелем. Поэтому раствор начинает просачиваться к белку через строго выверенный промежуток времени.

В ходе текущего эксперимента планируется получить кристаллы белков, провоцирующих воспаление в организме термостабильных белков, которые можно использовать как биокатализаторы, а также кристаллы мутантных форм белка, что позволит удешевить производство инсулина.

Контейнеры были отправлены на МКС 4 апреля. 25 июня они должны вернуться на «Союз МС-11», после чего ученые смогут приступить к исследованию полученных структур.

Полезная невесомость

На основе проведенных прежде экспериментов биологи уже получили данные для разработки нового лекарства от туберкулеза, доказав эффективность выращивания белков именно в условиях невесомости.

С использованием кристаллов, выращенных в космосе, ученые исследовали пространственную структуру белка-мишени для создания антитуберкулезных препаратов — фермента из бактерии Mycobacterium tuberculosis. После проведения измерений с помощью рентгеновских лучей и последующей математической обработки полученных результатов была установлена пространственная структура свободного белка и его комплексов. Специалисты смогли наблюдать изменения в биомолекуле на нескольких последовательных стадиях «реакции». Полученные данные об атомарном строении белка на разных этапах реакции пригодны для синтеза антитуберкулезного препарата.

За цикл работ «Структурная биология макромолекул, значимых для биотехнологии и медицины» коллектив ученых из Курчатовского института (Валерия Самыгина, Инна Куранова и Владимир Попов) получили премию им. Е.С. Федорова. Эта премия присуждается раз в три года за выдающиеся научные работы, открытия и изобретения отделением физических наук РАН.

Валерия Самыгина и Инна Куранова также работают во ФНИЦ «Кристаллография и фотоника» РАН, а Владимир Попов –– в ФИЦ «Фундаментальные основы биотехнологий» РАН.

iz.ru

Ссылка на основную публикацию
Adblock detector